# **Technical data**

# Smart sheets

for floorings and walkways

# kuraray Trosifol<sup>®</sup> SentryGlas<sup>®</sup>

# Introduction

# Interlayer strength, depth and capabilities

Delivering your window into the world of advanced interlayers for laminated safety glass, Kuraray's Advanced Interlayer Solutions Division (AIS) is underpinned by decades of innovation, application knowledge, domain experience and market success.

**OUR ADVANCED INTERLAYER PORTFOLIO** – comprising Trosifol® PVB and SentryGlas® ionoplast interlayers – has continually revolutionized aesthetic, structural and functional glass design, fabrication and installation in the architectural and automotive/transportation segments.

Designed to benefit consumers, society and industry, our products are advancing the functionality of glass, while our engineers and consultants are setting new application benchmarks by collaborating on solutions that both sustain and inspire.

We are committed to helping you transform your mindset and take your applications to the next level – aesthetically, functionally and structurally. Enjoy greater design freedom and give your glazing strength, clarity, character and purpose with solutions that cover safety, security, sound insulation, UV/solar/energy management, color and print.





Bangkok city downtown, Thailand

# **OUR DIVERSE PRODUCT RANGE,**

the broadest on the global market and our domain expertise create strength; and we channel this strength into helping you succeed. We strive to be your strongest ally and supporter and will help you navigate and conquer the ever-changing demands of the global glass industry. Worldwide production, R&D and support, means we are always by your side... no matter where you are.





Mahanakhon, Bangkok, Thailand

# Smart sheets for selecting the right glass combination for glass floorings and walkways

# **BASIC DESIGN REQUIREMENTS**

- The glass flooring should be robust enough to safely bear the imposed live loads (weight of people) in addition to its own weight (dead load) with a reasonable safety factor.
- Glass being a brittle material, a high design redundancy must be ensured to sustain the design loads even if any one of the glass layers break accidentally due to spontaneous breakages, or accidental impact.
- Due to viscoelastic behavior of the interlayer, load duration and temperatures must be considered. A load duration of 1 hour for the imposed live load and 40 °C are recommended.
- From serviceability point of view, people should not fear moving on the flooring due to excessive "sagging" (deflection).



# **DESIGN CONSIDERATIONS**

- The glass floorings have been considered to be supported on all the four edges. The edges have been considered to be "simply supported" in the structural analysis.
- "Sandwich" model used for non linear analysis in FEA tool SJ Mepla 5.0.6 Software
- Imposed loads on the flooring and the load combinations have been considered as per Australian standard AS 1170.1 – 2002. Load safety factor of 1.2 for self weight and 1.5 for imposed live load has been considered.
- Load combination for the scenario "All Layers are Intact" – 1.2 x Self weight + 1.5 x Imposed live load
- Load combination for the scenario "One Layer is Broken" – 1.0 x Self weight + 1.0 x Imposed live load
- Imposed concentrated live loads have been considered to be acting at the center of the panel in area of 150 x 150 mm.
- Permissible stresses for heat strengthened glass
   = 29.2 MPa (edge locations) and 62.9 MPa for fully tempered glass have been considered as ASTM E 1300
   - 2019.
- For Post breakage strength check, the upper glass layer is considered to be broken.
- The maximum values of deflection and stress have been mentioned. For the majority of cases, it occurred for point loads.
- The smart sheet is applicable only to SentryGlas® 5000.

# Other important design considerations

Making the glass flooring with the combination of HS and FT glass is certainly the most ideal glass combination that not only ensures good resistance to accidental impacts but, also a high post breakage strength. However, below factors give an all FT glass combination an edge over HS–FT glass combination.

# WHAT GLASS TYPE SHOULD BE CHOSEN, FULLY TEMPERED OR HEAT STRENGTHENED?

- FT glass has the highest stress endurance limit but doesn't have a high post breakage strength. Whereas, HS glass has a lower stress endurance limit but, a remarkably higher post breakage strength. Thus, a combination of FT and HS glass would be the ideal combination to get the best of the two worlds. However, assymetric surface waviness of FT and HS glass, laminators, genrally have low confidence for a successful lamination.
- Use of HS glass no doubt ensures high post breakage strength but, it limits the pre-breakage strength as permissible stress for HS glass at the edge locations, for 1 hour load is 29.2 MPa compared to 73.1 MPa for FT glass.
- FT glass is not promoted for flooring applications due to the fear of "wet blanket" effect getting triggered off post the accidental breakage of glass e.g. spontaneous breakages due to NiS or an hard body impact at the edges. FT glass can be very hard to break with impacts at locations other than edges. The probability of breakages of more than 1 glass layer due to impact at edges is extremely low as only the top layer is vulnerable. Similarly, the probability of spontaneous breakages due to NiS in more than 1 glass layer at the same time is extremely rare. A heat soak test is recommended to rule out any NiS related spontaneous breakages.
- High stiffness of SentryGlas<sup>®</sup> 5000 should resist "wet blanket" effect to get triggered off to a large extent in four side framed laminates even when tempered glass is used.

Mahanakhon Skywalk, Bangkok, Thailand



People on Zhangjiajie Glass Bridge, China

Note: The user should make his/her own decision for the type of glass to be used. Above considerations are for informational purposes only.

# Floorings in private residential areas and office areas for general use LOAD REQUIRE-

**MENTS AS PER** TABLE 3.1 OF AS 1170.1 2002

**IMPOSED LOADS** 

2. Point Load = 270 kg

@ 40 °C TEMP.

1. Uniform Load = 300 kg/m<sup>2</sup>

LOAD ACTING FOR 1 HOUR



• Glass panel (1.0 x 1.0 Mts) mesh with the point load acting at the center as used for finite element modeling & calculations in Mepla

# 3.1 Reference values of imposed floor actions

| Typ<br>for<br>str | be of activity/occupancy<br>part of the building or<br>ucture     | Specific uses                                                                        | Uniformly distrib-<br>uted actions<br>[kPa]                  | Concentra-<br>ted actions<br>[kN] |  |
|-------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|--|
| A                 | Domestic and residen-<br>tial activities (also see<br>category C) |                                                                                      |                                                              |                                   |  |
| A1                | Self-contained<br>dwellings                                       | General areas, private kitchens and laundries in self-contained dwellings            | 1.5                                                          | 1.81                              |  |
|                   |                                                                   | Balconies and roofs used for floor type activi-<br>ties, in self-contained dwellings |                                                              |                                   |  |
|                   |                                                                   | a. less than 1 m above ground level                                                  | 1.5                                                          | 1.5 kN/m run<br>along edge        |  |
|                   |                                                                   | b. other                                                                             | 2.0                                                          | 1.8 <sup>1</sup>                  |  |
|                   |                                                                   | Stairs <sup>1</sup> and landings in self-contained dwellings                         | 2.0                                                          | 2.7                               |  |
| A2                |                                                                   | Non-habitable roof spaces in selfcontained dwellings                                 | 0.5                                                          | 1.4 <sup>1</sup>                  |  |
| A2                | Other                                                             | General areas, bedrooms, hospital wards,<br>hotel rooms, toilet areas                | 2.0                                                          | 1.81                              |  |
|                   |                                                                   | Communal kitchens                                                                    | 3.0                                                          | 2.7                               |  |
|                   |                                                                   | Balconies and roofs used for floor type activi-<br>ties with community access        | same as areas provi-<br>ding access but not<br>less than 4.0 | 1.8                               |  |
| в                 | Offices and work areas                                            | Operating theatres, X-ray rooms, utility rooms                                       | 3.0                                                          | 4.5                               |  |
|                   | not covered elsewhere                                             | Work rooms (light industrial) without storage                                        | 7.0                                                          | 7 5                               |  |
|                   |                                                                   | Offices for general use                                                              | 3.0                                                          | 3.5                               |  |
|                   |                                                                   |                                                                                      | 3.0                                                          | 2.7 <sup>1</sup>                  |  |

# Floorings in private & residential areas / office areas for general use with 3 x 6 mm/0.24 inch glass + 2 x 1.52 mm/60 mil SentryGlas®

| Widths     | Deflection/<br>Stress                         | Lengths [mm]<br>1000<br>Intact Broken           | 1100<br>Intact | Broken        | 1200<br>Intact | Broken        | 1300<br>Intact          | Broken                              | 1400<br>Intact                      | Broken                              | 1500<br>Intact               | Broken          |
|------------|-----------------------------------------------|-------------------------------------------------|----------------|---------------|----------------|---------------|-------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------|-----------------|
| [mm] [in]  |                                               | [MPa]                                           | [MPa]          |               | [MPa]          |               | [MPa]                   |                                     | [MPa]                               |                                     | [MPa]                        |                 |
| 1000 39.37 | Deflection<br>Stress                          | 2.59 3.79<br>28.81 32.72                        | 2.74<br>29.52  | 4.06<br>33.68 | 2.86<br>30.13  | 4.28<br>34.5  | 2.96<br>30.41           | 4.46<br>34.95                       | 3.03<br>30.79                       | 4.6<br>35.47                        | 3.08<br>31.07                | 4.71<br>35.88   |
| 1100 43.31 | Deflection<br>Stress                          | 2.74 4.06<br>29.52 33.68                        | 2.94<br>29.47  | 4.41<br>33.63 | 3.10<br>30.12  | 4.70<br>34.50 | 3.23<br>30.50           | 4.94<br>35.07                       | 3.34<br>30.97                       | 5.15<br>35.7                        | 3.42<br>31.35                | 5.31<br>36.22   |
| 1200 47.24 | Deflection<br>Stress                          | 2.86 4.28<br>30.13 34.5                         | 3.10<br>30.12  | 4.70<br>34.50 | 3.30<br>30.07  | 5.06<br>34.44 | 3.47<br>30.48           | 5.38<br>35.04                       | 3.62<br>31.04                       | 5.65<br>35.77                       | 3.74<br>31.52                | 5.88<br>36.38   |
| 1300 51.18 | Deflection<br>Stress                          | 2.96 4.46<br>30.41 34.95                        | 3.23<br>30.5   | 4.94<br>35.07 | 3.47<br>30.48  | 5.38<br>35.04 |                         |                                     |                                     |                                     |                              |                 |
| 1400 55.12 | Deflection<br>Stress                          | 3.03 4.60<br>30.79 35.47                        | 3.34<br>30.97  | 5.15<br>35.70 | 3.62<br>31.04  | 5.65<br>35.77 |                         |                                     |                                     |                                     |                              |                 |
| 1500 59.06 | Deflection<br>Stress                          | 3.08 4.71<br>31.07 35.88                        | 3.42<br>31.35  | 5.31<br>36.22 | 3.74<br>31.52  | 5.88<br>36.38 |                         |                                     |                                     |                                     |                              |                 |
| 1600 62.99 | Deflection<br>Stress                          | 3.120 4.80<br>31.47 36.39                       | 3.49<br>31.8   | 5.45<br>36.84 | 3.83<br>32.1   | 6.07<br>37.08 |                         |                                     |                                     |                                     |                              |                 |
| 1700 66.93 | Deflection<br>Stress                          | 3.15 4.86<br>31.62 36.64                        | 3.54<br>32.05  | 5.56<br>37.17 | 3.9<br>32.34   | 6.23<br>37.51 |                         |                                     |                                     |                                     |                              |                 |
| 1800 70.87 | Deflection<br>Stress                          | 3.18         4.91           31.73         36.83 | 3.58<br>32.22  | 5.65<br>37.45 |                |               |                         |                                     |                                     |                                     |                              |                 |
| 1900 74.80 | Deflection<br>Stress                          | 3.194.9531.6236.77                              |                |               |                |               |                         |                                     |                                     |                                     |                              |                 |
| Widths     | Deflection/<br>Stress                         | Lengths [mm]<br>1700<br>Intact Broken           | 1800<br>Intact | Broken        | 1900<br>Intact | Broken        | TAB2                    | >                                   |                                     |                                     |                              |                 |
| [mm] [in]  |                                               | [MPa]                                           | [MPa]          |               | [MPa]          |               | Glass                   | construct                           | ion                                 |                                     |                              |                 |
| 1000 39.37 | Deflection<br>Stress                          | 3.154.8631.6236.64                              | 3.18<br>31.73  | 4.91<br>36.83 | 3.19<br>31.62  | 4.95<br>36.77 | 3 x 6 r<br>+ 2 x 1      | nm (0.24 i<br>52 mm (6              | n) FT gla<br>60 mil) S              | ss<br>entryGlas                     | S <sup>®</sup>               |                 |
| 1100 43.31 | Deflection<br>Stress                          | 3.545.5632.0537.17                              | 3.58<br>32.22  | 5.65<br>37.45 |                |               | <b>Loads</b><br>Max. u  | <b>and load</b> on iform live       | combinat                            | <b>tions</b><br>300 kg/m            | 1 <sup>2</sup>               |                 |
| 1200 47.24 | Deflection                                    | 3.90 6.23                                       |                |               |                |               | Point l                 | oad = 270                           | kg                                  |                                     |                              |                 |
|            | Stress                                        | 32.34 37.51                                     |                |               |                |               | Scena                   | rio 1: All la                       | ayers inta                          | act                                 | ive load                     |                 |
| 1300 51.18 | Deflection<br>Stress                          |                                                 |                |               |                |               | Scena                   | rio 2: Any                          | one laye                            | r is accide                         | entally b                    | roken           |
| 1400 55.12 | Deflection<br>Stress                          |                                                 |                |               |                |               | Impor                   | tant notes                          | ive load l                          | nas been                            | consider                     | red to          |
| 1500 59.06 | Deflection<br>Stress                          |                                                 |                |               |                |               | be a<br>2. Your         | cting for 1<br>ng's Modu            | L hour @<br>lus for S               | 40 °C.<br>entryGlas                 | s® E = 27                    | .8 MPa          |
| 1600 62.99 | Deflection<br>Stress                          |                                                 |                |               |                |               | 3. Defl<br>have<br>It m | ection val<br>been cal<br>ay not be | ues for o<br>culated f<br>design re | ne layer k<br>or inform<br>equireme | oroken s<br>ation on<br>nts. | cenario<br>ly.  |
| 1700 66.93 | Deflection                                    |                                                 |                |               |                |               | Max. a                  | llowable d                          | leflectior                          | consider                            | red = Sp                     | an/300          |
| 1800 70.87 | Stress<br>——————————————————————————————————— |                                                 |                |               |                |               | The m<br>have b         | aximum va<br>een menti              | alues of c<br>ioned. Fo             | leflection<br>r the maj             | and str                      | esses<br>cases, |
|            | Derteetion                                    |                                                 |                |               |                |               |                         |                                     |                                     |                                     |                              |                 |
|            | Stress                                        |                                                 |                |               |                |               | it occu<br>Permi        | irred for t                         | he point                            | load case                           | e.<br>As for 1 k             | our load        |

# **Glass walkways for**



S Mahanakhon Skywalk, Bangkok, Thailand

# LOAD REQUIREMENTS **AS PER TABLE 3.1 OF** AS 1170.1 2002

IMPOSED LOADS

1. Uniform Load = 500 kg/m<sup>2</sup>

2. Point Load = 360 kg

LOAD ACTING FOR 1 HOUR @ 40 °C TEMP.

# 3.1 Reference values of imposed floor actions

| Typ<br>of t | e of activity/occupancy for part<br>he building or structure | Specific uses                                                                                                                                           | Uniformly distri-<br>buted actions<br>[kPa] | Concentrated<br>actions<br>[kN] |  |  |
|-------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------|--|--|
| с           | Areas where people may congregate                            |                                                                                                                                                         |                                             |                                 |  |  |
| C4          | Areas with possible physical activities                      | Dance halls and studios, gymnasia                                                                                                                       | 5.0                                         | 3.6                             |  |  |
|             |                                                              | Drill halls and drill rooms                                                                                                                             | 5.0                                         | 9.0                             |  |  |
| C5          | Areas susceptible to overcrowding                            | Assembly areas without fixed<br>seating (concert halls, bars, vesti-<br>bules, public lounges, places of<br>worship, shopping malls and<br>grandstands) | 5.0                                         | 3.6                             |  |  |
|             |                                                              | Stages in public assembly areas                                                                                                                         | 7.5                                         | 4.5                             |  |  |
| D           | Shopping areas                                               | Shop floors for the sale and dis-<br>play of merchandise                                                                                                | 4.0                                         | 3.6                             |  |  |
| ТАВ         | 3 0                                                          |                                                                                                                                                         |                                             |                                 |  |  |

# Floorings in public areas susceptible to overcrowding – with 3 x 8 mm/0.31 inch glass + 2 x 1.52 mm/60 mil SentryGlas® (Commercial & retail spaces where people may assemble in case of emergency)

| Widths<br>[mm] [in] | Deflection/<br>Stress | Lengths [mm]<br>1200<br>Intact Broker<br>[MPa] | 1400<br>Intact Broken<br>[MPa] | 1600<br>Intact Broken<br>[MPa] | 1800<br>Intact Broken<br>[MPa] | 2000<br>Intact Broken<br>[MPa] | 2200<br>Intact Broke<br>[MPa] | 2400<br>Intaci<br>[MPa] | t Broken       | 2600<br>Intact Broken<br>[MPa] | 2800<br>Intact Broken<br>[MPa] | 3000<br>Intact Broken<br>[MPa]                   | 3200<br>Intact Broken<br>[MPa]              | 3400<br>Intact Broken<br>[MPa]                                         | 3600<br>Intact Broken<br>[MPa]                                                                                                                                                                                                                                     |  |  |
|---------------------|-----------------------|------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------|----------------|--------------------------------|--------------------------------|--------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1200 47.24          | Deflection<br>Stress  | 2.32 3.49<br>25.09 28.41                       | 2.54 3.9<br>25.91 29.70        | 2.68 4.19<br>26.74 30.81       | 2.78 4.39<br>27.18 31.47       | 2.84 4.55<br>27.31 31.8        | 2.87 4.88<br>27.62 32.18      | 2.93<br>27.72           | 5.13<br>32.36  | 3.03 5.34<br>27.64 32.37       | 3.105.5027.8132.54             | 3.165.6227.8232.59                               | 3.205.7127.6932.52                          | 3.23 5.78<br>27.84 32.65                                               | 3.25 5.84<br>27.84 32.66                                                                                                                                                                                                                                           |  |  |
| 1400 55.12          | Deflection<br>Stress  | 2.54 3.90<br>25.91 29.70                       | 2.86 4.54<br>25.38 29.13       | 3.12 5.15<br>26.33 30.47       | 3.43 6.06<br>26.99 31.45       | 3.84 6.86<br>27.31 32.05       | 4.18 7.54<br>27.77 32.66      | 4.46<br>27.98           | 8.11<br>33.022 |                                |                                |                                                  |                                             |                                                                        |                                                                                                                                                                                                                                                                    |  |  |
| 1600 62.99          | Deflection<br>Stress  | 2.68 4.19<br>26.74 30.81                       | 3.125.1526.3330.47             | 3.746.6726.8931.01             | 4.48 8.13<br>27.68 32.20       | 5.16 9.47<br>28.17 33.06       |                               |                         |                |                                |                                |                                                  |                                             |                                                                        |                                                                                                                                                                                                                                                                    |  |  |
| 1800 70.87          | Deflection<br>Stress  | 2.78 4.39<br>27.18 31.47                       | 3.43 6.06<br>26.99 31.45       | 4.48 8.13<br>27.68 32.20       |                                |                                |                               |                         |                |                                |                                | <b>Glass construc</b><br>3 x 8 mm (0.31          | tion<br>in) FT glass                        | Max. allowat                                                           | Max. allowable deflection<br>considered = Span/300<br>The maximum values of<br>deflection and stresses have<br>been mentioned.<br>For the majority of cases, it<br>occurred for the point load<br>case.<br>Permissible stresses for glass<br>types for 1 hour load |  |  |
| 2000 78.74          | Deflection<br>Stress  | 2.84 4.55<br>27.31 31.80                       | 3.84 6.86<br>27.31 32.05       | 5.16 9.47<br>28.17 33.06       |                                |                                |                               |                         |                |                                |                                | + 2 x 1.52 mm (<br>Loads and load                | combinations                                | deflection and been mentic                                             |                                                                                                                                                                                                                                                                    |  |  |
| 2200 86.61          | Deflection<br>Stress  | 2.87 4.88<br>27.62 32.18                       | 4.18 7.54<br>27.77 32.66       |                                |                                |                                |                               |                         |                |                                |                                | Max. uniform liv<br>Point load = 360             | ve load = 500 kg/m<br>0 kg                  | For the majo<br>occurred for<br>case.                                  |                                                                                                                                                                                                                                                                    |  |  |
| 2400 94.49          | Deflection<br>Stress  | 2.93 5.13<br>27.72 32.36                       | 4.46 8.11<br>27.98 33.022      |                                |                                |                                |                               |                         |                |                                |                                | Scenario 1: All                                  | layers intact                               | Permissible<br>types for 1 h                                           |                                                                                                                                                                                                                                                                    |  |  |
| 2600 102.36         | Deflection<br>Stress  | 3.03 5.34<br>27.64 32.37                       |                                |                                |                                |                                |                               |                         |                |                                |                                | + 1.5 x Imposed<br>Scenario 2:                   | a live load                                 | <ul> <li>FT glass =</li> <li>Heat stren</li> <li>= 29.2 MPa</li> </ul> | 62.9 MPa<br>gthened glass<br>a                                                                                                                                                                                                                                     |  |  |
| 2800 110.24         | Deflection<br>Stress  | 3.10 5.50<br>27.81 32.54                       |                                |                                |                                |                                |                               |                         |                |                                |                                | 1.0 x Self weigh<br>+ 1.0 x Imposed              | nt<br>I live load                           |                                                                        |                                                                                                                                                                                                                                                                    |  |  |
| 3000 118.11         | Deflection<br>Stress  | 3.165.6227.8232.59                             |                                |                                |                                |                                |                               |                         |                |                                |                                | Important note<br>1. The imposed                 | es<br>live load has been                    | IF.                                                                    |                                                                                                                                                                                                                                                                    |  |  |
| 3200 125.98         | Deflection<br>Stress  | 3.20 5.71<br>27.69 32.52                       | - <u></u>                      | ·                              |                                |                                |                               |                         |                |                                |                                | @ 40°C.<br>2. Young's Modu                       | ulus for SentryGlas                         | 5®                                                                     |                                                                                                                                                                                                                                                                    |  |  |
| 3400 133.86         | Deflection<br>Stress  | 3.23 5.78<br>27.84 32.65                       | - <u></u>                      |                                |                                |                                |                               |                         |                |                                |                                | E = 27.8 MPa<br>3. Deflection va<br>broken scena | llues for one layer<br>ario have been calcu | 1-                                                                     |                                                                                                                                                                                                                                                                    |  |  |
| <br>3600 141.73     | Deflection<br>Stress  | 3.255.8427.8432.66                             |                                |                                |                                |                                |                               |                         |                |                                |                                | lated for info<br>not be desigr                  | rmation only. It ma<br>n requirements.      | у                                                                      |                                                                                                                                                                                                                                                                    |  |  |
|                     |                       |                                                |                                | ·                              |                                |                                |                               |                         |                |                                |                                |                                                  |                                             |                                                                        |                                                                                                                                                                                                                                                                    |  |  |

TAB 4 O



• Maximum principal stress contours for the glass panel 1.0 x 1.0 mts under the imposed loads



• Maximum deflection contours for glass panel 1.0 x 1.0 Mts under imposed loads

# Floorings in public areas susceptible to overcrowding – with 3 x 10 mm/0.39 inch glass + 2 x 1.52 mm/60 mil SentryGlas® (Commercial & retail spaces where people may assemble in case of emergency)

| Widths<br>[mm] [in] | Deflection/<br>Stress | Lengths [mm]<br>1600<br>Intact Broken<br>[MPa] | 1800<br>Intact Broken<br>[MPa] | 2000<br>Intact Broken<br>[MPa] | 2200<br>Intact Broken<br>[MPa] | 2400<br>Intact Broken<br>[MPa] | 2600<br>Intact Broken<br>[MPa]                 | 2800<br>Intact Broken<br>[MPa] | 3000<br>Intact Broken<br>[MPa] | 3200<br>Intact Broken<br>[MPa] | 3400<br>Intact Broken<br>[MPa] |
|---------------------|-----------------------|------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| 1600 62.99          | Deflection<br>Stress  | 2.21 3.78<br>18.25 20.98                       | 2.64 4.60<br>18.81 21.82       | 3.04 5.35<br>19.19 22.44       | 3.38 6.02<br>19.62 23.05       | 3.68 6.61<br>19.88 23.46       | 3.94         7.12           19.98         23.7 | 4.15 7.56<br>20.20 24.01       | 4.33 7.92<br>20.30 24.19       | 4.48 8.23<br>20.29 24.26       | 4.60 8.49<br>20.43 24.44       |
| 1800 70.87          | Deflection<br>Stress  | 2.64 4.60<br>18.81 21.82                       | 3.26 5.77<br>18.80 21.81       | 3.84 6.90<br>19.25 22.55       | 4.37 7.96<br>19.79 23.31       | 4.86 8.92<br>20.14 23.87       | 5.28 9.78<br>20.34 24.25                       | 5.65 10.54<br>20.64 24.68      |                                |                                |                                |
| 2000 78.74          | Deflection<br>Stress  | 3.04 5.35<br>19.19 22.44                       | 3.84 6.90<br>19.25 22.55       | 4.63 8.46<br>18.92 22.22       | 5.39 9.98<br>19.48 23.05       |                                |                                                |                                |                                |                                |                                |
| 2200 86.61          | Deflection<br>Stress  | 3.386.0219.6223.05                             | 4.37 7.96<br>19.79 23.31       | 5.39 9.98<br>19.48 23.05       |                                |                                |                                                |                                |                                |                                |                                |
| 2400 94.49          | Deflection<br>Stress  | 3.68 6.61<br>19.88 23.46                       | 4.86 8.92<br>20.14 23.87       |                                |                                |                                |                                                |                                |                                |                                |                                |
| 2600 102.36         | Deflection<br>Stress  | 3.94 7.12<br>19.98 23.7                        | 5.28 9.78<br>20.34 24.25       |                                |                                |                                |                                                |                                |                                |                                |                                |
| 2800 110.24         | Deflection<br>Stress  | 4.15 7.56<br>20.20 24.01                       | 5.65 10.54<br>20.64 24.68      |                                |                                |                                |                                                |                                |                                |                                |                                |
| 3000 118.11         | Deflection<br>Stress  | 4.33 7.92<br>20.30 24.19                       |                                |                                |                                |                                |                                                |                                |                                |                                |                                |
| 3200 125.98         | Deflection<br>Stress  | 4.48 8.23<br>20.29 24.26                       |                                |                                |                                |                                |                                                |                                |                                |                                |                                |
| 3400 133.86         | Deflection<br>Stress  | 4.60 8.49<br>20.43 24.44                       |                                |                                |                                |                                |                                                |                                |                                |                                |                                |
| 3600 141.73         | Deflection<br>Stress  | 4.70 8.71<br>20.47 24.52                       |                                |                                |                                |                                |                                                |                                |                                |                                |                                |

TAB 5 O



Mahanakhon Skywalk, Bangkok, Thailand

| 3600<br>Intact | Broken | Glass construction                                                                      |
|----------------|--------|-----------------------------------------------------------------------------------------|
| [MPa]          |        | 3 x 10 mm (0.39 in) FT glass                                                            |
| 4.70           | 8.71   | + 2 x 1.52 mm (60 mil) SentryGlas®                                                      |
| 20.47          | 24.52  | Loads and load combinations                                                             |
|                |        | Max. uniform live load = 500 kg/m²                                                      |
|                |        | Point load = 360 kg                                                                     |
|                |        | Scenario 1: All layers intact                                                           |
|                |        | 1.2 x Self weight                                                                       |
|                |        | + 1.5 x Imposed live load                                                               |
|                |        | Scenario 2:                                                                             |
|                |        | Any one layer is accidentally broken                                                    |
|                |        | 1.0 x Self weight                                                                       |
|                |        | + 1.0 x Imposed live load                                                               |
|                |        | Important notes                                                                         |
|                |        | 1. The imposed live load has been considered                                            |
|                |        | to be acting for 1 hour @ 40 °C.                                                        |
|                |        | 2. Young's Modulus for SentryGlas® E                                                    |
|                |        | = 27.8 MPa                                                                              |
|                |        | 3. Deflection values for one layer broken<br>scenario have been calculated for informa- |
|                |        | It may not be design requirements.                                                      |
|                |        | Max. allowable deflection considered<br>= Span/300                                      |
|                |        | The maximum values of deflection and                                                    |
|                |        | stresses have been mentioned. For the                                                   |
|                |        | majority of cases, it occurred for the point                                            |
|                |        | load case.                                                                              |
|                |        | Permissible stresses for glass types for                                                |
|                |        | 1 hour load                                                                             |
|                |        | <ul> <li>FT glass = 62.9 MPa</li> </ul>                                                 |

• Heat strengthened glass = 29.2 MPa

# Floorings in public areas susceptible to overcrowding – with 3 x 12 mm/0.47 inch glass + 2 x 1.52 mm/60 mil SentryGlas<sup>®</sup> (Commercial & retail spaces where people may assemble in case of emergency)

| Widths<br>[mm] [in] | Deflection/<br>Stress | Lengtl<br>2000<br>Intact<br>[MPa] | ns [mm]<br>Broken | 2200<br>Intact<br>[MPa] | Broken         | 2400<br>Intact<br>[MPa] | Broken         | 2600<br>Intact<br>[MPa] | Broken         | 2800<br>Intact<br>[MPa] | Broken         | 3000<br>Intact<br>[MPa] | Broken         | 3200<br>Intact<br>[MPa] | Broken         | 3400<br>Intact<br>[MPa] | Broken         | 3600<br>Intact<br>[MPa] | Broken         | 3800<br>Intact<br>[MPa] | t Broken       |
|---------------------|-----------------------|-----------------------------------|-------------------|-------------------------|----------------|-------------------------|----------------|-------------------------|----------------|-------------------------|----------------|-------------------------|----------------|-------------------------|----------------|-------------------------|----------------|-------------------------|----------------|-------------------------|----------------|
| 2000 78.74          | Deflection<br>Stress  | 2.99<br>13.82                     | 5.30<br>16.2      | 3.47<br>14.25           | 6.24<br>16.85  | 3.93<br>14.59           | 7.13<br>15.33  | 4.34<br>14.82           | 7.94<br>17.79  | 4.71<br>15.12           | 8.69<br>18.22  | 5.04<br>15.31           | 8.69<br>18.22  | 5.33<br>15.40           | 9.95<br>20.89  | 5.58<br>15.59           | 10.48<br>21.92 | 5.80<br>16.14           | 10.94<br>22.82 | 6.00<br>16.64           | 11.35<br>23.61 |
| 2200 86.61          | Deflection<br>Stress  | 3.47<br>14.25                     | 6.24<br>16.85     | 4.12<br>14.53           | 7.50<br>17.14  | 4.74<br>14.91           | 8.72<br>17.74  | 5.32<br>15.20           | 9.89<br>17.94  | 5.85<br>15.56           | 10.98<br>18.77 | 6.34<br>15.81           | 11.98<br>20.90 | 6.79<br>16.33           | 12.89<br>22.37 |                         |                |                         |                |                         |                |
| 2400 94.49          | Deflection<br>Stress  | 3.93<br>14.59                     | 7.13<br>15.33     | 4.74<br>14.91           | 8.72<br>17.74  | 5.54<br>14.93           | 10.32<br>17.77 | 6.31<br>15.25           | 11.88<br>18.33 |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |
| 2600 102.36         | Deflection<br>Stress  | 4.34<br>14.82                     | 7.94<br>17.79     | 5.32<br>15.20           | 9.89<br>17.94  | 6.31<br>15.25           | 11.88<br>18.33 |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |
| 2800 110.24         | Deflection<br>Stress  | 4.71<br>15.12                     | 8.69<br>18.22     | 5.85<br>15.56           | 10.98<br>18.77 |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |
| 3000 118.11         | Deflection<br>Stress  | 5.04<br>15.31                     | 8.69<br>18.22     | 6.34<br>15.81           | 11.98<br>20.90 |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |
| 3200 125.98         | Deflection<br>Stress  | 5.33<br>15.40                     | 9.95<br>20.89     | 6.79<br>16.33           | 12.89<br>22.37 |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |
| 3400 133.86         | Deflection<br>Stress  | 5.58<br>15.59                     | 10.48<br>21.92    |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |
| 3600 141.73         | Deflection<br>Stress  | 5.80<br>16.14                     | 10.94<br>22.82    |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |
| 3800 149.61         | Deflection<br>Stress  | 6.00<br>16.64                     | 11.35<br>23.61    |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |
| TAB 6 🛛             |                       |                                   |                   |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |                         |                |



## **Glass construction**

3 x 12 mm (0.47 in) FT glass + 2 x 1.52 mm (60 mil) SentryGlas®

# Loads and load combinations

- Max. uniform live load = 500 kg/m<sup>2</sup>
- Point load = 360 kg

# **Scenario 1: All layers intact** 1.2 x Self weight

+ 1.5 x Imposed live load

# Scenario 2:

# Any one layer is accidentally broken 1.0 x Self weight

+ 1.0 x Imposed live load

# Important notes

- 1. The imposed live load has been considered to be acting for 1 hour @ 40  $^{\circ}\text{C}.$
- 2. Young's Modulus for SentryGlas® E = 27.8 MPa
- Deflection values for one layer broken scenario have been calculated for information only. It may not be design requirements.

Max. allowable deflection considered = Span/300

The maximum values of deflection and stresses have been mentioned. For the majority of cases, it occurred for the point load case.

Permissible stresses for glass types for 1 hour load

- FT glass = 62.9 MPa
- Heat strengthened glass = 29.2 MPa

# Contact



# FOR FURTHER INFORMATION

on products from Kuraray, please visit www.kuraray.com. You can find further information on our Trosifol® and SentryGlas® products at www.trosifol.com.

# KURARAY AMERICA, INC.

Advanced Interlayer Solutions Division Wells Fargo Tower 2200 Concord Pike, Ste. 1101 Wilmington, DE 19803, USA P +1 800 635 3182

# trosifol@kuraray.com

# **KURARAY EUROPE GMBH**

Advanced Interlayer Solutions Division Kronenstr. 55 53840 Troisdorf Germany P +49 2241 2555 226

# **KURARAY CO., LTD**

Advanced Interlayer Solutions Division Tokiwabashi Tower 2-6-4 Otemachi, Chiyoda-ku Tokyo 100-0004, Japan P +813 6701 1508



Copyright  $\ensuremath{\textcircled{O}}$  2023 Kuraray. All rights reserved.

Trosifol, Butacite, SentryGlas, SG, SentryGlas Xtra, SGX, SentryGlas Acoustic, SGA and Spallshield are trademarks or registered trademarks of Kuraray Co., Ltd. or its affiliates. Trademarks may not be applied for or registered in all countries. The information, recommendations and details given in this document have been compiled with care and to our best knowledge and belief. They do not entail an assurance of properties above and beyond the product specification. Final determination of suitability of any material or process and whether there is any infringement of patents is the sole responsibility of the user.