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Abstract Modern architecture promotes a high
demand for transparent building envelopes and espe-
cially glass facades. Commonly, facades are designed
to fulfill a multitude of objectives such as superior aes-
thetic appearance, a higher degree of weathering reli-
ability, quick installation, high transparency as well
as economic and ecologic efficiency. For such glazing
applications, often an assessment of acoustic properties
and especially sound insulation abilities are required.
Because of the complexity of such an experimental
or computational investigation given the framing sys-
tems and glass unit compositions, a reliable and fairly
accurate estimation of sound insulation properties of
such systems becomes time-consuming and demand-
ing. This paper provides a Machine Learning (ML)
based estimation tool of acoustic properties (weighted
sound insulation value RW , STC and OITC) of dif-
ferent glazing set-ups. A sufficiently rich database was
used to train several machine learning algorithms. The
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acoustic properties are determined by comparing the
third-octave or octave band spectrum of the sound
reduction index with a reference curve (typical curve
for solid construction elements) specified in the stan-
dard DIN EN ISO 717-1. Sound insulation values can
currently only be determined by complex and expen-
sive experimental investigations or numerical simula-
tions for certain glass set-ups. Hence, there is no effi-
cient tool for convenient and reliable estimation of the
sound insulation performance of glazing systems avail-
able at the moment. To this end, the engineering team
led by the authors conducted extensive studies on var-
ious glazings consisting of different glass assemblies
with varying glass, cavity and interlayer thicknesses
and different types of interlayer and gas fillings. Based
on our research outcomes, a comprehensive web-based
prediction program, the so-called AI Tool, has been
developed recently. This program can provide a quick
analysis and accurate prediction of arbitrary glazing
set-ups, interlayers and glazing infills. A series of lab-
oratory tests were conducted to validate the predictions
by the AI Tool. The goal of this program is to provide
designers, engineers, and architects an effective and
economically efficient tool to facilitate the design w.r.t.
acoustical properties.

Keywords Artificial intelligence ·Machine learning ·
Glass · Acoustic properties · Sound insulation value
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1 Introduction

In building acoustics, so-called single-number metrics
for the sound insulation value have become established
for the evaluation and comparison of facade products in
termsof glazing systems anddifferent glass assemblies.
A glass assembly in this context describes the com-
position of the glazing without, however, taking into
account the frame or the substructure. They allow the
characterization of the sound insulation of a building
component (e.g. laminated glass (LG), insulating glass
units (IGU) etc.) without considering the frequency
dependency, which significantly increases comprehen-
sibility for non-experts and simplifies the formulation
of technical requirements for glasses and glazing sys-
tems. The weighted sound insulation value RW used in
Europe as well as the sound transmission class (STC)
and the out-/indoor transmission class OITC values
used in the USA are determined from sound transmis-
sion loss (STL) measurements at certified laboratories
by comparing the third-octave in the range from 100
to 3 150 Hz) or octave (in the range from 125 to 2 000
Hz) band spectrum of the sound reduction index with
a reference curve (typical curve for solid construction
elements) specified in the standard DIN EN ISO 717-1.

To this day, the determination of the sound insulation
values can currently only be determined by complex
numerical analyses or expensive experimental tests.
This raises the question of whether it is possible to
use artificial intelligence (AI) and machine learning
(ML) methods to develop a robust prediction tool to
determine the sound insulation value for arbitrary glass
assemblies. Therefore, this case study presents for the
first time the so-calledSOUNDLABAI tool,whichwill
be abbreaviated as AI tool or ML tool in the remainder
of this paper.

Based on prior experience of M&M Network-Ing
UG(haftungsbeschränkt) in that field froman academic
and industry-related perspective (cf. (Kraus and Drass
2020a, b; Kraus and Taras 2020) etc.), the requirements
in the project between Kuraray Europe GmbH and
M&M Network-Ing UG (haftungsbeschränkt) were
to develop an AI-based prediction tool based on the
database provided by Kuraray Europe GmbH. In addi-
tion, a requirement for the accuracy of the AI tool
was set, namely an accuracy bandwidth of±1dB. This
means that the predictions by the tool must reach the
value from the database with an uncertainty of ±1dB.

In summary, this case study reports on how the ML
project between Kuraray Europe GmbH and M&M
Network-Ingwas set upwith regard to the development
of an AI-based tool for predicting the sound insulation
value of any glass assemblies or set-ups.

2 Basics on acoustic properties of glass

Domestic noise is a high stress factor, particularlywhen
it is experienced in the intimacy of the own homestead
or in an working environment. With efficient glazing
systems adapted in design to the acoustic demands of a
certain stakeholder, it is possible to maintain a satisfac-
tory environment for different purposes. Especially in
early design stages, a quick evaluation and prediction
of acoustic capabilities of a given glass set-up might
be of high interest and crucial for the building owner
or the tenants. Based on this circumstance, this paper
presents a novel AI-based tool for evaluation of acous-
tic glass system properties in order to allow a reliable
and efficient assessment and optimization of acoustic
performance.

2.1 Influential Parameters of the glass assemblies on
acoustic performance

From previous studies it is known that essential param-
eters influencing acoustic properties of glazing systems
are the glass thickness, the use of laminated safety
glass/special acoustic interlayers and the use of insulat-
ing glass with cavities filled with gases such as argon
and krypton. In the following, the influencing factors
mentioned for controlling the acoustic performance of
glass assemblies are briefly outlined to give the reader
a sense of the relevant parameters.

2.1.1 Glass thickness effect

Each material’s sound absorption depends on its mass,
stiffness and damping properties. For a single glass
pane, the only effectiveway to increase its performance
is to increase its thickness, as stiffness and damping
cannot be changed. The acoustic transmission loss for
a single glass pane, measured over a range of frequen-
cies, varies with the thickness of the glass.

Although thicker glass tends to provide greater
sound insulation, it can actually transmit more sound
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at certain frequencies. Each glass thickness has a weak
frequency value, i.e. a frequency for which this glass
is less sound-absorbing than the others. This value is
called the critical frequency. For example, a 4mm thick
glass is fairly transparent for high frequencies around
3500Hz (poor attenuationmeasured in dB); 6mm thick
glass is poor for frequencies around 2000 Hz; and 10
mm thick glass performs poorly at 1300Hz. The higher
the mass, the less problematic the critical frequency
seems to be: 25 mm thick glass has no weak point. The
critical frequency problem can also arise in an insu-
lating glass unit consisting of two panes of the same
thickness. At this frequency, the two panes are said to
vibrate (resonate) together reducing the overall acous-
tic performance of the glass.

2.1.2 Laminated vs. monolithic glass

Considering laminated and monolithic glass, the sound
transmission is more attenuated by a laminated glass
than by a monolithic glass of the same mass. As an
example, a laminated glass of 2+2 mm reduces sound
at high frequencies much more than a monolithic glass
of 4 mm thickness. It is because the effect of the criti-
cal frequencies disappears due to the sound attenuation
provided by polyvinyl butyral (PVB). The same applies
to the 3+3 mm laminated against the monolithic 6 mm.
At low frequencies (traffic noise), however, the effect of
polymer interlayer is less pronounced, but still positive.

2.1.3 Cavity effect

A standard double glazing unit does not reduce the
sound transmission substantially more than a mono-
lithic glass. The air space between the glass panes only
becomes decisive in the case of really wide cavities.
For increasing sound absorption, the ideal cavity width
is 200 mm. At widths below (or above) 200 mm, the
effect is less noticeable (although a wide cavity always
works better than a narrower one). Double glazing with
a 10 mm air gap behaves almost like a 20 mm air gap.

2.2 State-of-the-art for predicting sound insulation
values of glass structures

According to Chen et al. (2019), DeGanyar et al.
(2019), to this day there is no efficient tool available for

convenient and reliable estimation of the sound insula-
tion performance of fenestration systems. Still, labora-
tory testing ofwindows, facades and curtainwalls is the
most accurate way of evaluating acoustic performance
of different glazings. On the other hand, empirical, ana-
lytical or numerical methods for at least preliminary
evaluation of glass set-up w.r.t. their acoustic proper-
ties are of significant pragmatic value especially for
early design choices within a building project.

So far, analytical models for estimating acoustic
properties of single and multi-layer glasses with / with-
out cavities exist (Chen et al. 2019), which however
diverge unsatisfactorily from test results, especially for
bounded, sealed and laminated glass. It is worth not-
ing that the estimate can be above or below measured
values, hence these models cannot be used for“worst
case” predictions.

In most cases, simple linear or non-linear regression
models (Kurra 2012) are used to estimate the sound
insulation value of various glass assemblies or glaz-
ings. Although these models are very efficient, under-
standable and robust, they lack the ability to gener-
alize for arbitrary glazings, arbitrary laminates, glass
thicknesses, etc. The possible combinations of differ-
ent glass assemblies are very large, so that regression
models only cover a small range of the diversity men-
tioned above. This is where our general model comes
in, which can make a robust and fast prediction for any
glass thickness, interlayer thickness and cavity thick-
ness, for both asymmetrical and symmetrical insulating
glass. It can therefore be said that the presentMLmodel
is a generalisation of the above-mentioned regression
models.

On the other hand, numerical approaches like the
Finite Element Method (FEM) and Finite Element
Analysis(FEA) can model both air-borne, structure-
borne and the linked fluid-structure interaction behav-
ior of window frames and glazing (DeGanyar et al.
2019) through explicitly computing the cavities of the
analyzed glazing. So far it is known that FEA are more
accurate in the low-frequency range due to meshing
and time-stepping conditions. However, meaningful
vibro-acoustic simulations requires an advanced level
of expertise to set-up and judge the FEM model and
results. An alternative to FEM is the use of the Statis-
tical Energy Analysis (SEA) technique, which is often
used in the automotive and aircraft industry. Due to its
advanced mathematical framework, SEA is not very
practical for efficient gathering of performance infor-
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mation on the acoustic behavior of a given glass sys-
tem. For further details on currently researched hybrid
approaches in that direction, the reader is referred to
(DeGanyar et al. 2019).

3 SoundLab AI tool

3.1 Basics on artificial intelligence and machine
learning

In this section, we define the essential terms of Artifi-
cial Intelligence (AI) and Machine Learning (ML) to
enable the reader to understand the basic approach and
methods used to develop the ML Tool. Since this paper
is presenting a case study, the individual steps of the
development of theML tool are described in a textbook-
manner. The data used cannot be disclosed for reasons
of confidentiality, but the tool is available online to any-
one free of charge.

Artificial intelligence and Machine Learning is the
science of getting computers to learn and make pre-
dictions, without being explicitly programmed. AI is
dedicated to the theory and development of computa-
tional systems capable of performing tasks that nor-
mally require human intelligence, such as visual per-
ception, speech recognition, decisionmaking and trans-
lation between languages. Machine learning is a sub-
class of AI, which enables systems to learn from given
data without the need of explicit programming for a
specific problem. The aim of ML is to generate artifi-
cial knowledge from experience, which is in this con-
text and also generally data. ML algorithms build a
mathematical model M to infer between quantities of
interest (features; targets) based on data tomake predic-
tions or decisionswithout being explicitly programmed
(Frochte 2019; Rebala et al. 2019; Chowdhary 2020;
Murphy 2012). However, a fundamental prerequisite is
that the knowledge gained from the data can be gen-
eralized and used to solve new problems, to analyses
previously unknown data or to make predictions about
unmeasured data (prediction). In general, ML also has
a strong link to optimization, as learning problems are
typically formulated as minimizing a loss function on
a number of training examples (Bishop 2006; Good-
fellow et al. 2016; Murphy 2012). Furthermore ML is
closely related to statistics in terms of methods but dif-
fer in their goal of drawing population inferences from

a sample (statistics) vs. finding generalization predic-
tive patterns (Bzdok et al. 2018).

Two different learning types can be distinguished for
ML: supervised and unsupervised learning (Mitchell
1997; Bishop 2006; Goodfellow et al. 2016; Frochte
2019). Only supervised learning and specifically the
formulation of a regression model are addressed here,
as the present AI tool is based on this special form of
algorithms (cf. Fig. 1).

In supervised ML projects, it is essential to have
a dataset D = (xn, tn)Nn=1 with N observations, where
the datasetmust have feature/influence variables xn and
target/response variables tn . Both variables can be con-
tinuous or discrete. While supervised learning aims to
develop a predictive modelM based on both influence
and response variables, unsupervised learning learns a
model based only on the features (clustering; dimen-
sional reduction). In supervised learning, a distinction
is made between classification and regression prob-
lems. While in the first case the response variables tn
can only assume discrete values, the response variables
tn are continuous in regression problems.

Focusing on the present case study, namely the pre-
sentation of the AI Tool, the problem at hand was
described as a regression problem in a supervised learn-
ing task. The goal of solving a regression problem is to
predict the value of one or more continuous target vari-
ables t given the value of a vector x of input variables.
By using regression models, it is furthermore possible
to catch non-linear and more complex dependencies
between the in- and outputs. For further information it
is referred to (Kraus 2019; Bishop 2006; Goodfellow
et al. 2016; Mitchell 1997; Lee et al. 2018; Murphy
2012).

3.2 ML project for soundLab AI tool

A generally valid scheme of steps involved in a suc-
cessful ML project is presented in Fig. 2. In the follow-
ing, all steps related to the development of the ML tool
are briefly presented. Therefore, different algorithms
are analyses and evaluated in order to obtain the best
possible result for the prediction of the weighted sound
insulation value. For reasons of confidentiality, the data
usedmaynot bemade available or printed, but the struc-
ture of the algorithms usedwill be explained. Addition-
ally, the AI tool is available online free of charge for
everyone.
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Fig. 1 Overview on the ML techniques with special focus on supervised regression models and the AI Tool, from (Kraus and Drass
2020a)

Fig. 2 Flowchart of generally valid scheme of steps involved in a successful ML project, from (Kraus and Drass 2020a)

3.2.1 0. Requirements for the AI Tool

Before presenting the entire process of the ML project,
it was necessary to define the specifications for the ML
tool in detail with the customer. The specifications of
the tool were given by Kuraray Europe GmbH and are
summarized in the following list:

– Application of AI to predict the weighted sound
insulation value.

– No restrictions in the input, so that any glass
assembly can be predicted in terms of arbitrary
glass thicknesses, interlayer types, interlayer thick-
nesses, laminated glasses, double and triple insulat-

ing glasses with different thicknesses of the cavity
as well as different gas fillings.

– Prediction accuracy for the sound insulation value
of ± 1 dB.

– Deployment of the model on a website.

In particular, the prediction accuracy of 1 dB was a
challenge in the prediction, which is described in more
detail below.

3.2.2 1. Read the data

In step 1, existing data from the customer in form of an
excel spreadsheet are compiled and brought in a form
that an AI/ML model can access it and the learning
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algorithm is able to train on the data. This stepmay take
minutes to months in dependence of the problem and
the data structure of the respective environment, espe-
cially when digitizing existing older data from paper.
It is advisable to consider standardization protocols for
this step in order to guarantee data consistency within
a company. It is important to note that the predictive
power and accuracy of any data-driven model is based
on the accuracy and quality of the input data.

The data structure for the present ML project was
available as so-called structured data in tabular form.
Structured data is information, which has a pre-defined
data model (Frochte 2019; O’Leary 2013; Rusu et al.
2013), i.e. the location of each part of the data as well
as the content is exactly know. Here, only the thickness
of the glass, the interlayer type and thickness as well
as the type of gas filling and the thickness of the gas
filling were used as features. The experimentally deter-
mined sound insulation values, in this case RW , STC
and OITC , were used as labels or target values. The
following list can be used to summaries the database
and its features:

• Laminated glass I

– Glass I-1 (2 - 15 mm)
– Interlayer thickness I (0.38 - 4.56 mm)
– Interlayer type I
– Glass I-2 (2 - 15 mm)

• Trosifol®Clear / Trosifol®UltraClear
• Trosifol®SC Monolayer
• Trosifol®SC Multilayer
• Trosifol®ExtraStiff
• SentryGlas®/ SentryGlas®XtraTM

– Glass I-2

• Cavity 1

– Cavity thickness I (1 - 30 mm)
– Gas filling I (No Gas, Air, Argon, Krypton)

• Laminated glass II

– Glass II-1 (2 - 15 mm)
– Interlayer thickness II (0.38 - 4.56 mm)
– Interlayer type II

• Trosifol®Clear / Trosifol®UltraClear
• Trosifol®SC Monolayer
• Trosifol®SC Multilayer
• Trosifol®ExtraStiff
• SentryGlas®/ SentryGlas®XtraTM

– Glass II-2 (2 - 15 mm)

• Cavity II

– Cavity thickness II (1 - 30 mm)
– Gas filling II (No Gas, Air, Argon, Krypton)

• Laminated glass III

– Glass III-1 (2 - 15 mm)
– Interlayer thickness III (0.38 - 4.56 mm)
– Interlayer type III

• Trosifol®Clear / Trosifol®UltraClear
• Trosifol®SC Monolayer
• Trosifol®SC Multilayer
• Trosifol®ExtraStiff
• SentryGlas®/ SentryGlas®XtraTM

– Glass III-2 (2 - 15 mm)

With this basic structure of the data, all following
steps in this project were carried out. The total number
of entries in the database is about 1000 values and was
provided by the customer without any preparation or
cleaning.

3.2.3 2. Pre-processing of the data

After the data has been read into Python, the actual
work of developing the ML tool by preparing the
data began. Using programmed routines, the data was
checked for missing values or incorrect entries. The
results of the analysis showed no errors or statistically
significant outliers in the database. Since the database
is smaller than 1000 entries, this step of cleaning up the
data was done automatically. A code snippet to check
if there are zero entries in the database can be found in
Appendix 1.

The result of listing 1 was that there are no null
entries in the entire database, so that no further adjust-
ments are necessary here. Common approaches in data
pre-processing for dealing with zero values would be,
for example, to delete them or to fill them up with the
column averages (Frochte 2019).

In a further pre-processing step, the categorical vari-
ables (interlayer type and gas type) are dealt with. For
the problem at hand, three strategies were considered:

– Deleting categorical variables
– Label encoding
– One-hot encoding

Both the implementation and the effect that delet-
ing categorical variables can have on the result is easy
to imagine and in some cases even leads to improved
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Table 1 Comparison of handling categorical variables (deleting
categorical variables, label encoding or one-hot-encoding) with
respect to the mean average error of predicting the weighted
sound insulation value

Deletion Label encoding One-hot-encoding

MAE [dB] 2.57 2.51 2.16

Bold indicates shows that one-hot encoding leads to the best
results

prediction accuracy. In comparison, label encoding and
one-hot encoding are more complex than simply delet-
ing columns of categorical variables in the spread-
sheet. Label encoding means basically that the tar-
get labels will be encoded with values between 0 and
n_classes− 1, while a one-hot encoder encodes each
category as binary value. A one-hot is a group of entries
among which the legal combinations of values are only
those with a single high (1) entry and all the others low
(0). The input to this transformer should be an array-
like of integers or strings, denoting the values taken
on by categorical features. The features are encoded
using a one-hot (aka“one-of-K”or“dummy”) encoding
scheme. This creates a binary column for each category
and returns a sparse matrix or dense array (depend-
ing on the sparse parameter). By default, the encoder
derives the categories based on the unique values in
each feature (Rodríguez et al. 2018). This encoding is
needed for feeding categorical data tomany estimators.
An example of one-hot encoding is shown in Fig. 3.
The graph illustrates the procedure in relation to the
categorical variables of different interlayer types.

In order to check which strategy of processing cat-
egorical variables is best, a Python function is imple-
mented that makes their accuracy in their prediction
comparable (see Appendix 1).

If we now run the function for the deletion of the
categorical variables (see Appendix 1), label encod-
ing (see Appendix 1) and one-hot encoding (see
Appendix 1), we get the following results for the three
approaches in terms of theMean Average Error (MAE)
(see Table 1):

For reasons of clarity, the Python codes for all three
approaches were placed in the appendix. The final
result shows that the best performance was achieved
for the one-hot-encoding approach. Thus, in a final pre-
processing step for the analyzed, categorical variables
such as the interlayer type and the type of gas filling
(No Gas, Air, Argon, Krypton) were converted into

discrete numerical values using the one-hot-encoding
method. In general it can be assumed formostMLalgo-
rithms that label-encoding is better suited for ordinal
categories (data can be ranked e.g. pain intensity) and
one-hot-encoding for nominal categories (data cannot
be ranked e.g. gender). If nominal categories are label-
encoded, the model might misinterpret the data based
on the assigned order of numbers, assuming it to be
ordinal (Géron 2019).

3.2.4 3. Extraction and definition of features

The extraction and definition of features is an essen-
tial step in ML projects. For the present ML project,
the selection of features was of minor interest, since a
weak feature correlation could be observed in the data
analyzing the so-called feature correlation matrix.

A feature correlation matrix is a table showing cor-
relation coefficients between features. Each cell in the
table shows the correlation between two variables. In
correlation matrices like the one shown below, it is
important to keep the following points in mind:

– Each cell in the grid represents the value of the
correlation coefficient between two variables.

– The value at position (a, b) represents the correla-
tion coefficient between features at row a and col-
umn b. This will be equal to the value at position
(b, a)

– All diagonal elements are 1. Since diagonal ele-
ments represent the correlation of each variable
with itself, it will always be equal to 1.

– The axes ticks denote the feature each of them rep-
resents.

– A large positive value (near to 1.0) indicates a
strong positive correlation, i.e., if the value of one
of the variables increases, the value of the other
variable increases as well.

– A value near to 0 (both positive or negative) indi-
cates the absence of any correlation between the
two variables, and hence those variables are inde-
pendent of each other.

– Each cell in the matrix below is also represented
by shades of a color. Here blue shades of the color
indicate smaller valueswhile red shades correspond
to larger values (near to 1). This scale is given with
the help of a color-bar on the right side of the plot.

As can be clearly seen in Fig. 4, strong correlations
between the individual features only occur in the last
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Fig. 3 Example of
one-hot-encoding related to
different interlayer types
(Trosifol® Clear UltraClear,
Trosifol® SC Monolayer,
Trosifol® SC Multilayer,
Trosifol® Extra Stiff and
SentryGlas®) produced by
Kuraray Europe GmbH

Fig. 4 Feature correlation
matrix of all features for
ML tool

elements from position II of the glass structure. In the
literature, an unnecessary feature is often deleted from
the dataset at a correlation value of 0.9. However, since
only a maximum of 16 features are available in this
study, all features are used in the following for training
the ML algorithm.

3.2.5 4. Training of model

This essential part of a ML project is about the train-
ing of one or more ML algorithms. For this purpose,
two steps have to be done in advance. On the one hand,
suitable ML algorithms have to be selected which are
suitable for the regression task for the AI-based predic-

tion of the assessed sound insulation value for different
glass structures. For the ML tool, three types of regres-
sion models have been trained to evaluate the general
performance:

– Linear Regressor
– Decision Tree Regressor
– Random Forest Regressor

Linear regression models are not described in detail
in the following, as it can be assumed that the basic
principles are known. A decision tree builds regression
or classification models in the form of a tree structure.
It breaks down a dataset into smaller and smaller sub-
sets while at the same time an associated decision tree
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is incrementally developed. The final result is a tree
with decision nodes and leaf nodes. A decision node
has two or more branches, each representing values
for the attribute tested. Leaf node represents a decision
on the numerical target. The topmost decision node in
a tree which corresponds to the best predictor called
root node. Decision trees can handle both categorical
and numerical data. ARandomForest is a classification
and regression procedure consisting of several uncorre-
lated decision trees. All decision trees are grown under
a certain type of randomization during the learning
process. Random decision forests correct for decision
trees’ habit of overfitting to their training set (Goulet
2020).

Before evaluating the performance of the above-
mentioned ML algorithms, data has to be split into a
training and a validation set accordingly to the classical
holdout method (Raschka 2018). Additionally, a sep-
arate test dataset must be kept, which is neither used
for training nor for validation of the algorithm. This
separate test dataset is the latest experimental results
provided byKuraray Europe GmbH in this publication.

After pre-processing and visualization of the data,
different MLmodels are evaluated. The main objective
is to obtain a robustMLmodel that is able to generalize
the extracted knowledge well to data that was not used
during training (Mitchell 1997).

Thismeans that at the end of the training process, the
final model should correctly predict the training data,
while at the same time it should also be able to gener-
alize well to previously unseen data. Poor generaliza-
tion can be characterized by overtraining or overfitting.
This can be used to describe amodel that produces very
accurate results for the training samples but is unable
to produce good results for data that is too different
from the training data (Goodfellow et al. 2016). These
two crucial demands (good prediction on training data
as well as good generalization abilities) are conflict-
ing and also known as the Bias and Variance dilemma
(Bishop 2006). In order to judge how well a MLmodel
performs on data, there exist several types of methods
for evaluation (i.e. validation) (Raschka 2018):

– holdout validation
– k-fold cross validation
– stratified K-fold cross validation
– leave-one-out cross validation (LOOCV)

The simplest method for validation is holdout val-
idation, in which the dataset is split into training and

validation data over a fixed percentage value. Using the
holdout method is perfectly acceptable for model eval-
uation when working with relatively large sample sizes
(Raschka 2018).

In order to decide on the performance of the three
ML models in this section, the entire dataset was
divided into a 60/40 split and the training and validation
of the models was carried out subsequently. It should
be noted here again that a separate test dataset is also
kept for the final test of the algorithm’s quality, which
is used neither for training nor for validation and hyper-
parameter tuning. Based on these preliminary studies,
the prediction error plot and the cumulative distribu-
tion function (CDF) are presented for each model. At
this point, it should be noted that this step is merely a
preselection of a suitable ML algorithm and that more
detailed explanations of the algorithm and its hyperpa-
rameters follow in the section on hyperparameter tun-
ing.

Returning to the results of Fig. 5, a prediction error
plot and the correspondingCDF are shownwith respect
to the above-mentioned threeMLalgorithms.A predic-
tion error plot shows the actual target values from the
dataset against the predicted values generated by the
present MLmodel. This allows to obtain the amount of
variance together with a notion of potential bias in the
model. Data scientists can diagnose regression mod-
els using this plot by comparing against the 45 degree
line, where the prediction exactly matches the model.
In this plot, we only show the performance of themodel
on the validation dataset. This means that the applied
ML models has not seen this data until after training.
Being more precisely, in Fig. 5 one can see blue dots
which represent the actual validation data, which cor-
responds to the real measurements of the sound insu-
lation value of different glass assemblies. The x-axis
indicated as”y2 represents the real, physical values of
the sound insulation value,whereas the y-axis indicated
as“ŷ”describes the predicted values of the sound insu-
lation value. In the case that the model corresponds
exactly to the measurements, this results in the so-
called identity line, which runs at an angle of 45 degree.
The “best fit”line, on the other hand, is the result of our
ML model for the approximation of the assessed insu-
lation value.

In contrast, a cumulative distribution function
describes the cumulative probability of any given func-
tion below, above or between two points. Similar to a
frequency table that counts the accumulated frequency
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Fig. 5 Prediction error plot
with a direct comparison of
measurement data with the
approximation by the best
fit line evaluated only for
the validation dataset and
illustration of the
cumulative distribution
function for different ML
models

of an occurrence up to a certain value, the CDF tracks
the cumulative probabilities up to a certain threshold.
Besides finding the probability of a random variable
below or between two points, one can find the proba-
bility of a randomdistribution above a particular thresh-
old. The latter is a technique called the complementary
cumulative distribution function, or tail distribution,

and as is quite useful in hypothesis testing. Finally, the
CDF can be used to visualize the distribution between
measured data and predicted data, as it is here the case.

As can be seen in Fig. 5, the linear regression model
is unsuitable to perform the complex task of predicting
the weighted sound insulation value, which is evident
from the poor R2 value. The R2 score that specifies the
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goodness of fit of the underlying regression model to
the validation data. In contrast, the decision tree model
and the random forest regressor give very good results
even without hyperparameter tuning. However, since
decision trees generally tend to overfit, which also indi-
cates a lackof generalization capability, the randomfor-
est regressor is used for the following hyperparameter
tuning. If one looks at the CDF, the very good result by
the treemodels is also evident here, whereas the regres-
sion model clearly underestimates reality, especially in
the range of small to medium RW values, which is on
the unsafe side from a practical construction point of
view.

3.2.6 5. Iteration to determine the best model

In order to decide from the abundanceofMLmodels the
most suitable one and to fine-tune the inherent model
parameters (hyperparameter tuning), the Random For-
est ML model was selected in the previous section.

To optimize the inherent model parameters of
the random forest regressor, a cross validation (CV)
approach was used to get the best model for predicting
the sound insulation value of arbitrary glass assemblies.
Additionally, CV reduces the risk of so-called over- and
underfitting as well by allowing a better estimation of
the generalisation ability of a model. CV is a valida-
tion technique for assessing how the results of a statis-
tical analysis will generalize to an independent dataset
(Raschka 2018). The k-fold cross validation for exam-
ple has a single parameter k, which refers to the number
of groups into which a given data sample is divided. As
such, the procedure is often referred to as k-fold cross
validation, where the k is replaced with the specific
choice to form the concrete name (e.g. k = 5 becomes
a 5-fold cross-validation as schematically depicted in
Fig. 6).

In the present study, a 5-fold cross validation
approach with a split defined from the previous section
of 60/40% of training and validation data was applied.
The resulting hyperparameters of the random forest
regressor read:

– max_depth = 11
– n_estimators = 35
– max_features = 15
– bootstrap = False
– min_samples_split = 4

Fig. 6 Example of a 5-fold cross validation, from (Kraus and
Drass 2020a)

Fig. 7 Box Plot of Random Forest maximum tree depth vs. R2
accuracy

max_depth represents the depth of each tree in the
forest. The deeper the tree, the more splits it has and it
captures more information about the data. Choosing a
high number for max_depth, the ML model will most
likely overfit. Therefore, this parameter must be chosen
careful.

To examine the maximum depth of the trees, a loop
was programmed and the quality of the prediction was
analysed as a function of max_depth. As can be seen
in Fig. 7, there is no performance gain from a depth of
11, so this parameter was chosen accordingly to avoid
overfitting.

n_estimators stands for the number of trees in the
forest. The higher the number of trees, the better the
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Sample Input

(…)

(…)Predic�on 1 Predic�on 2 Predic�on n

Random Forest Average Predic�on

Tree 1 Tree 2 Tree n

Fig. 8 Schematic presentation a random forest and its decision trees

Fig. 9 Illustration of a part of the present Random forest ML model with focus on an aperture of decision tree number five

data can be learned. However, adding a large number
of trees can slow down the learning process consid-
erably, which is why we perform a parameter search
to find the optimal point. According to the procedure
described above, a loop was programmed to check the
performance for different values of the. As a result,
n_estimators = 35 was chosen due to the fact of no
performance gain within the training set. For reasons
of conciseness, this plot is not shown.

In order to showwhat the architecture of the selected
random forest looks like, the Scikit Learn implementa-
tion of the random forest offers the possibility to draw a
so-called dendrogram. A dendrogram is a diagram that
represents a tree. Since a random forest naturally con-

sists of individual trees, a tree must be selected when
it is illustrated.

Figure 8 shows a schematic representation of a ran-
dom forest and its decision trees, which run in parallel
without any interaction. The final prediction is an aver-
age of all predictions of each decision tree. The indi-
vidual levels of the singular decision trees are defined
by the parameter max_depth. Figure 9 shows an exam-
ple of decision tree five. It is easy to see that the depth
has exactly 11 levels, as defined in the previous sec-
tion. On the basis of this representation, it is possible
to understand the prediction of theMLmodel, although
the representation of such deep random forests or deci-
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Fig. 10 Prediction error plot of ML Tool with a direct compar-
ison of measurement data with the approximation by the best fit
line evaluated only for the validation dataset, illustration of the

cumulative distribution function and representation of the resid-
ual plot for the hyperparameter-tuned random forest regressor

sion trees is not always easy to understand or easy to
represent due to their size.

This final model is now retrained and validated. For
this purpose, the prediction error plot and the cumula-
tive distribution function are shown again.

In addition, the so-called residual plot is added in
the following evaluation. A residual plot is a graph that
shows the residuals on the vertical axis and the inde-

pendent variable on the horizontal axis. A special fea-
ture of this plot is the separate display of the residuals
for training and validation set as well as the display
of a grey bar representing the customer’s specification
of ±1dB for the weighted sound reduction index RW .
Ideally, the majority of the residuals should lie in this
grey area to meet the client’s requirements.
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Looking at the accuracy of the present and final ML
tool, one can see an excellence performance in the pre-
diction error plot. Looking at Fig. 10, it can be con-
cluded that we have reached a R2 = 0.996 for train-
ing data and R2 = 0.982 for validation data. This
shows that the present ML model is very well suited
for predicting sound insulation values. Looking at the
cumulative distribution function, an excellent agree-
ment between the measured data and the predicted val-
ues by the ML tool can be observed.

Finally, focusing on the residual plot described
above, both training and validation data lie in the con-
fidence band of ±1dB in most cases, so that the cus-
tomer’s specification is met.

3.2.7 6. Model Accuracy for Test-Set

In this section, the hyperparameter-tuned model from
the previous section will be used to make prediction
on unseen data (test data), which correspond to a real
test dataset which has not been used for training or
validation and hypertuning of the ML model. A new
dataset on special glass assemblies has been provided
byKurarayEuropeGmbH,which is used as test dataset.
Hence, 20 different glazing set-ups have been addition-
ally experimentally analysed with regard to the sound
insulation value. In the following, the model accuracy
is presented as prediction error plot. As can be seen,
the model provides very good predictions for data that
were not the basis of the training of the algorithmwhich
manifest itself with by R2 = 0.947 (see Fig. 11).

3.2.8 7. Using the model for prediction

All necessary steps have now been taken to train a pre-
dictive ML model to predict the weighted sound insu-
lation value. The last step is to provide theMLmodel to
the customer. For this purpose, a web app application
was programmed in Python using Flask and mod_wsgi
for server deployment (Ronacher 2021; Dumpleton
2021D). The tool allows the input of any desired glass
assembly while intercepting invalid inputs. The user
interface is shown in Fig. 12. The web app consists
of only a single input and output page, making the
AI tool as user-friendly and easy to use as possible.
Looking at the left input mask in Fig. 12, any glass
structure with different thicknesses and interlayers can
be entered here. The glass thicknesses, however, are
limited to the common glass thicknesses of 2, 3, 4, 5,

Fig. 11 Prediction error plot of ML tool with a direct com-
parison of measurement test data with the approximation by
the best fit line evaluated only for the test dataset for the final
hyperparameter-tuned random forest regressor

6, 8, 10, 12, 15 and 19 mm. The products Trosifol®-
Clear / Trosifol®UltraClear, Trosifol®SC Monolayer,
Trosifol®SCMultilayer, Trosifol®ExtraStiff and Sen-
tryGlas®/ SentryGlas®XtraTM from Kuraray Europe
GmbH can be used as interlayers. A maximum of one
triple insulating glass can be entered into the tool. The
structure of the input is as follows:

– Laminated glass 1
– Cavity 1
– Laminated glass 2
– Cavity 2
– Laminated glass 3
– Cavity 3

Once the desired input is made, the user presses
“Predict”and theMLalgorithmcalculates the evaluated
sound insulation values for RW , STC and OITC . In
addition to the prediction, an uncertainty quantification
has been programmed, which gives an estimation of
how reliable / uncertain the prediction is. In addition to
these outputs, the tool indicates whether an experimen-
tal data point is available in the database. The output
mask of the tool is shown in Fig. 12 (right). In order
to understand the inputs of the server and to output the
correct values mod_wsgi (module Web Server Gate-
way Interface) is used to translate the Hypertext Trans-
fer Protocol (HTTP) to Flask-compatible values. Flask

123



SoundLab AI-Machine

Fig. 12 Visualization of SOUNDLAB AI: input and output masks

then triggers the corresponding function and returns
new values back to mod_wsgi as appropriate. This
means that Python code can be run on pretty much any
server without making any major adjustments, while
the website is still displayed using standard HTML
and CSS documents. The web app was launched in
2021 and is available at the following link: https://
soundcalculator.trosifol.com/

3.3 Limitations of the ML model

3.3.1 Glass assembly

TheMLmodel described here can predict the weighted
sound reduction index for any glass structures of differ-
ent glass thicknesses, different interlayer thicknesses,
symmetrical and asymmetrical structures of insulating

glass. However, the prediction only concerns the glass,
so that the frame or support structures are excluded.

3.3.2 Glass thickness effect and damping

In the manuscript, it is described that the glass thick-
ness effect and damping of the system has an influence
on the sound insulation value. However, themodel does
not consider such effects explicitly but implicitly as a
result of the measurements and the accurate approxi-
mation of the measurement data using machine learn-
ing. This approach is primarily a purely data-driven
approach, but can be further developed by defining
physical effects as losses in the loss function and thus
extending the purely data-driven approach into a so-
called physics-informed approach.However, a physics-
informed approach has not yet been implemented, so it
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is not presented here and reference is made to the liter-
ature (Moseley et al. 2020; Kraus and Drass 2020a).

4 Summary and discussion

In this case study, the ML project between M&M
Network-Ing and Kuraray Europe GmbH was briefly
presented. ThisMLproject for developing the so-called
SoundLab AI Tool was described, which is an AI-
based prediction tool to infer sound insulation values of
arbitrary glass assemblies. The idea was to predict the
weighted sound insulation value for glazing systems,
as this value can only be determined by very com-
plex numerical simulations or expensive experiments
in classical approaches. The demonstrated ML tool
was trained on structured data in a supervised learning
scheme. The data were obtained within an extensive
experimental program. The accuracy in the prediction
error plot shows a very high predictive ability, which
could be proven by a R2 = 0.996 value for training data
and R2 = 0.982 for validation data. In addition, theML
model was also checked for previously unexploited test
data. For the test dataset consisting of 20 entries, which
was neither used for training nor for hypertuning / val-
idation, a coefficient of determination of R2 = 0.947
was achieved, which is a very good result.

The tool developed is therefore is a suitable method
for making predictions of the sound insulation of any
glass assembly quickly, cost-effectively and efficiently,
which is a great advantage for the planning architects
and engineers, especially in early project phases. The
software-tool will be available online and provided by
Kuraray Europe GmbH on the homepage for a broad
audience.
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Appendix A code-snippet: count number of missing
values

1 #Number of missing values in data -
set X

2

3 import numpy as np
4

5 missing_val_count_by_column = (X.
isnull().sum())

6 print(missing_val_count_by_column[
missing_val_count_by_column >
0])

Listing 1 Code - Missing values

Appendix B code-snippet: processing of categorical
variables

1 from sklearn.ensemble import
RandomForestRegressor from

2 sklearn.metrics import
mean_absolute_error

3

4 train_X , val_X , train_y , val_y =
train_test_split(X, y_RW ,

5 train_size =0.8, test_size =0.2,
random_state =0)

6

7 # Function for comparing different
approaches def

8 score_dataset(train_X , val_X ,
train_y , val_y): model =

9 RandomForestRegressor(n_estimators
=100, random_state =0)

10 model.fit(train_X , train_y) preds =
model.predict(val_X) return

11 mean_absolute_error(val_y , preds)

Listing 2 Code - Function for comparing different approaches

Appendix C code-snippet: deleting categorical vari-
ables and performance test

1 drop_X_train = train_X.
select_dtypes(exclude =[’object’
])

2 drop_X_valid = val_X.select_dtypes(
exclude =[’object’])

3

4 reduced_X_train = drop_X_train.
dropna(axis=’columns ’)

5 reduced_X_valid = drop_X_valid.
dropna(axis=’columns ’)

6

7 print("MAE from Approach 1 (Drop
categorical variables and NaN):"
)

8 print(score_dataset(reduced_X_train
, reduced_X_valid , train_y ,

9 val_y))
10

11 # All categorical columns
object_cols = [col for col in

12 train_X.columns if train_X[col].
dtype == "object"]

13

14 # Columns that can be safely label
encoded good_label_cols = [col
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15 for col in object_cols if set(
train_X[col]) == set(val_X[col])
]

16

17 # Problematic columns that will be
dropped from the dataset

18 bad_label_cols = list(set(
object_cols)-set(good_label_cols
))

19

20 print(’Categorical columns that
will be label encoded:’,

21 good_label_cols) print(’\
nCategorical columns that will
be dropped

22 from the dataset:’, bad_label_cols)

Listing 3 Code - Function for deletion of categorical variables

Appendix D code-snippet: label encoding and per-
formance test

1 from sklearn.preprocessing import
LabelEncoder

2

3 # Drop categorical columns that
will not be encoded
label_X_train =

4 train_X.drop(bad_label_cols , axis
=1) label_X_valid =

5 val_X.drop(bad_label_cols , axis =1)
6

7 # Apply label encoder label_encoder
= LabelEncoder () for col in

8 set(good_label_cols): label_X_train
[col] =

9 label_encoder.fit_transform(train_X
[col]) label_X_valid[col] =

10 label_encoder.transform(val_X[col])
11

12 print("MAE from Approach 2 (Label
Encoding):")

13 print(score_dataset(label_X_train ,
label_X_valid , train_y , val_y))

Listing 4 Code - Label Encoding

Appendix E code-snippet: one-hot-encoding and
performance test

1 # Columns that will be one -hot
encoded low_cardinality_cols = [
col

2 for col in object_cols if train_X[
col]. nunique () < 10]

3

4 # Columns that will be dropped from
the dataset

5 high_cardinality_cols =

6 list(set(object_cols)-set(
low_cardinality_cols))

7

8 print(’Categorical columns that
will be one -hot encoded:’,

9 low_cardinality_cols) print(’\
nCategorical columns that will
be

10 dropped from the dataset:’,
high_cardinality_cols)

11

12 from sklearn.preprocessing import
OneHotEncoder

13

14 # Use as many lines of code as you
need!

15

16 OH_encoder = OneHotEncoder(
handle_unknown=’ignore’, sparse=
False)

17 OH_X_train =
18 pd.DataFrame(OH_encoder.

fit_transform(train_X[
low_cardinality_cols]))

19 OH_X_valid =
20 pd.DataFrame(OH_encoder.transform(

val_X[low_cardinality_cols])) #
21 Your code here
22

23 # One -hot encoding removed index;
put it back OH_X_train.index =

24 train_X.index OH_X_valid.index =
val_X.index

25

26 # Remove categorical columns (will
replace with one -hot encoding)

27 num_X_train = train_X.drop(
object_cols , axis =1) num_X_valid
=

28 val_X.drop(object_cols , axis =1)
29

30 # Add one -hot encoded columns to
numerical features OH_X_train =

31 pd.concat ([ num_X_train , OH_X_train
], axis =1) OH_X_valid =

32 pd.concat ([ num_X_valid , OH_X_valid
], axis =1)

33

34 print("MAE from Approach 3 (One -Hot
Encoding):")

35 print(score_dataset(OH_X_train ,
OH_X_valid , train_y , val_y))

Listing 5 Code - One-Hot-Encoding
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